Advantages of the Mathematical Structure of a Dirac Fermion

Main Article Content

E. Comay

Abstract

The mathematical structure of quantum field theories of first order and of second order partial differential equations is analyzed. Relativistic properties of the Lagrangian density and the dimension of its elements are examined. The analysis is restricted to elementary massive particles that are elements of the Standard Model of particle physics. In the case of the first order Dirac equation, the dimensionless 4-vector γµ and the partial 4-derivative ∂µ whose dimension is [L−1],
are elements of the mathematical structure of the theory. On the other hand, the mathematical structure of second order quantum equations has no dimensionless 4-vector which is analogous to γµ of the linear equation. It is proved that this deficiency is the root of inherent theoretical inconsistencies of second order quantum equations. Problems of the Klein-Gordon particle, the electroweak theory of the W±, Z particles and the Higgs boson theory are discussed.

Keywords:
Quantum field theory, lagrangian density, first order, second order quantum equations, electromagnetic interaction, consistency tests

Article Details

How to Cite
Comay, E. (2019). Advantages of the Mathematical Structure of a Dirac Fermion. Physical Science International Journal, 23(1), 1-10. https://doi.org/10.9734/psij/2019/v23i130143
Section
Original Research Article

References

Griffiths D. Introduction to elementary particles. 2nd edition, Wiley-VCH, Weinheim; 2008.

Weinberg S. The quantum theory of fields.Cambridge University Press, Cambridge.1995;I.

Bjorken JD, Drell SD. Relativistic quantum fields. McGraw-Hill, New York; 1965.

Goldstein H, Poole C, Safko J. Classical mechanics. AddisonWesley, San Francisco;2014.

Peskin ME, Schroeder DV. An introduction to quantum field theory. Addison-Wesley:Reading Mass; 1995.

Dirac PAM. The principles of quantum mechanics. Oxford University Press, London; 1958.

Schiff LI. Quantum mechanics. McGraw- Hill, New York; 1955.

Landau LD, Lifshitz EM. The classical theory of fields. Amsterdam, Elsevier; 2005.

Halzen F, Martin AD. Quarks and leptons,an introductory course in modern particle physics. John Wiley, New York; 1984.

Tanabashi M, et al. Particle data group.Phys. Rev. D98, 030001 (2018) and 2019 update.

Pauli W, Weisskopf V. Helv. Phys. Acta.1934;7:709. English translation: A. I.Miller Early Quantum Electrodynamics,Cambridge, University Press. 1994;188-205.

P. A. M. Dirac, Proc. Roy. Soc. Lond.1928;A117:610.

Darwin CG, Proc. Roy. Soc. Lond.1928;A118:654.

Abazov VM, et al. D0 collaboration. Phys.Lett. 2012;B718:451.

Aad G, et al. ATLAS collaboration. Phys.Lett. 2012;B712:289.

Pauli W, Rev. Mod. Phys. 1941;13:203.

Bjorken JD, Drell SD. Relativistic quantum mechanics. McGraw-Hill, New York; 1964.

Comay E. A theory of weak interaction dynamics. Open Access Library Journal.2016:3(12):1-10.
Available:https://www.scirp.org/journal/Paper-
Information.aspx?paperID=72788

Comay E. Further aspects of weak interaction dynamics. Open Access Library Journal. 2017;4(2):1-11. Available:https://www.scirp.org/journal/PaperInformation.aspx?PaperID=74373

Comay E. Differences between two weak interaction theories. Phys. Sci. Int. J.2019;21(1):1.
Available:http://www.journalpsij.com/index.php/PSIJ/article/view/30091/56456

Hagiwara K, Peccei RD, Zeppenfeld D,Hikaso K. Nuc. Phys. 1987;B282:253.

Hagiwara K, Woodside J, Zeppenfeld D.Phys. Rev. 1990;D41:2113.

Bauer TH, Spital RD, Yennie DR, Pipkin FM. Rev. Mod. Phys. 1978;50:261.

Wigner E. Ann. Math. 1939;40:149.

Feynman RP. QED, the strange theory of light and Matter. Princeton Science Library,USA; 1988.

Dirac PAM. Mathematical foundationsof quantum Theory. Ed. A. R. Marlow,Academic, New York; 1978.