Solving Generalized Nonlinear Schrödinger Equation by Adomian Decomposition Technique

Gaston Edah a,b,*, Villévo Adanhoumè b and Marc Amour Ayela c

aDépartement de Physique, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, BP 526 Cotonou, Bénin.
bInternational Chair of Mathematical Physics and Applications (ICMPA-Unesco Chair), BP 526 Cotonou, Université d’Abomey-Calavi, Bénin.
cInstitut de Mathématiques et de Sciences Physiques, Université d’Abomey-Calavi, BP 526 Cotonou, Bénin.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/PSIJ/2021/v25i930282

Editor(s): (1) Dr. Bheemappa Suresha, The National Institute of Engg, India. (2) Dr. Roberto Oscar Aquilano, University of Rosario (UNR), Argentina. Reviewers: (1) Louis Omenyi, Alex Ekwueme Federal University, Nigeria. (2) Natanael Karjanto, Sungkyunkwan University, South Korea.

Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here: https://www.sdiarticle5.com/review-history/78255

Received 11 September 2021
Accepted 13 December 2021

Original Research Article

ABSTRACT

In this paper, using a suitable change of variable and applying the Adomian decomposition method to the generalized nonlinear Schrödinger equation, we obtain the analytical solution, taking into account the parameters such as the self-steepening factor, the second-order dispersive parameter, the third-order dispersive parameter and the nonlinear Kerr effect coefficient, for pulses that contain just a few optical cycle. The analytical solutions are plotted. Under influence of these effects, pulse did not maintain its initial shape.

Keywords: Adomian method; nonlinear Schrödinger equation; ultrashort pulse propagation.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

*Corresponding author: E-mail: ggastonedah@gmail.com;
1 INTRODUCTION

The propagation process of ultrashort laser pulses in a nonlinear medium is nowadays in the center of interest because of its important application in the optical telecommunication, molecular systems, cosmology, condensed matter physics, quantum mechanics, superconductivity, and plasma physics [1]. In theoretical physics, the nonlinear Schrödinger equation is a classical field equation whose principal applications are the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic cigar-shaped traps, in the mean-field regime. [2] Important effects involved in this propagation process have been theoretically and experimentally considered by several authors [3]. In this paper, we solve the generalized nonlinear Schrödinger (GNLSE) by using Adomian decomposition technique. In this equation, the parameters such as the self-steepening factor, the second-order dispersive parameter, the third-order dispersive parameter and the nonlinear Kerr effect coefficient and the self-frequency shift are included. In a series of remarkable papers [1–5], the authors have studied this equation using various approaches. One of the methods is the Adomian decomposition method for solving a wide range of physical problems [5–13]. Several modifications were improved its ability in [14–22]. An advantage of this method is that it can provide analytical approximation or an approximated solution to a wide class of nonlinear equations without linearization, perturbation, closure approximation or discretization methods. Its abilities attracted many authors to use this method for solving physical problems. Our paper is organized as follows: in section 2, we present the analytical solutions. Section 3 contains the results and discussion and section 4 contains the conclusions.

2 ANALYTICAL RESULTS

The generalized nonlinear Schrödinger equation deals with the pulse envelope $A(z, t)$ related to the electric field $E(z, t)$. The evolution of $A(z, t)$ inside the dispersive nonlinear medium is then governed by the standard NLS equation generalized thanks to the additional terms involving the third-order dispersion effects. Such a generalized nonlinear Schrödinger equation has the form [22]

$$\frac{i}{\delta z} \cdot A + \frac{1}{2} \frac{\partial^2 A}{\partial z^2} + \frac{\partial^3 A}{\partial t^3} + \beta_3 n_2 L_D \left[|A|^2 A + i s \frac{\partial}{\partial \tau} \left(|A|^2 A - \tau_R A \frac{\partial |A|^2}{\partial \tau} \right) \right] = 0$$

$$A(0, \tau) = \sqrt{T_0} f_0(\tau)$$

where $\xi = z/L_D$ is the distance normalized to the dispersion length and $\tau = (t - z/n_0)/T_0$ is the time normalized to input pulse width T_0, $\delta_3 = \beta_3/(6T_0|\beta_2|)$ takes into account the third-order dispersion effects governed by β_3, $s = 1/(\omega_0 T_0)$ is the parameter responsible for self-steepening and $f_0(\tau)$ governs the pulse shape. Throughout this paper, intrapulse Raman scattering τ_R is equal to zero.

Now we provide the analytical solution of the generalized nonlinear Schrödinger equation. Setting $\kappa = \beta_0 n_2 L_D$, $\eta = \varepsilon \xi + \tau$, $\eta = \tau$, $g(\eta) = A(\xi, \tau)$ for small positive number ε, the above partial differential equation reduces to the following nonlinear functional equation

$$g(\eta) - \left\{ \frac{i}{2\delta_3} \int_{\eta_0}^{\eta} \frac{g(\xi)d\xi}{2\xi} - \frac{1}{\delta_3} \int_{\xi_0}^{\xi} \int_{\xi_0}^{\xi} g(\sigma)d\sigma d\xi \right\}$$

$$- \frac{\varepsilon \eta}{\delta_3} \int_{\eta_0}^{\eta} \int_{\eta_0}^{\eta} |g(\sigma)|^2 |g(\sigma)|^2 \frac{\partial g(\sigma)}{\partial \eta} d\sigma d\xi$$

$$= g(\eta_0) + \left[g'(\eta_0) - \frac{i}{2\delta_3} g(\eta_0) (\eta - \eta_0) \right]$$

$$+ \frac{1}{2} \left[g''(\eta_0) - \frac{i}{2\delta_3} g'(\eta_0) + \frac{s}{\delta_3} g(\eta_0) + \frac{s^2}{\delta_3} |g(\eta_0)|^2 g(\eta_0) \right] (\eta - \eta_0)^2$$

(1)
equivalently

\[g - N(g) = q \] \hspace{1cm} (2)

where

\[
N(g) = \frac{i}{2\delta_3} \int_{\eta_0}^{\eta} g(\xi) d\xi - \frac{\epsilon}{\delta_3} \int_{\eta_0}^{\eta} \int_{\zeta_0}^{\xi} g(\sigma) d\sigma d\xi
\]

\[-\frac{8K}{\delta_3} \int_{\eta_0}^{\eta} \int_{\zeta_0}^{\xi} |g(\sigma)|^2 |g(\sigma)| d\sigma d\xi + \frac{1K}{\delta_3} \int_{\eta_0}^{\eta} \int_{\zeta_0}^{\xi} \int_{\zeta_0}^{\sigma} |g(y)|^2 g(y) dy d\sigma d\xi \]

\[
q(\eta) = g(\eta_0) + \left[g'(\eta_0) - \frac{i}{2\delta_3} g(\eta_0)\right] (\eta - \eta_0)
\]

\[+ \frac{1}{2} \left[g''(\eta_0) - \frac{i}{2\delta_3} g'(\eta_0) + \frac{\epsilon}{\delta_3} g(\eta_0) + \frac{8K}{\delta_3} g(\eta_0) |g(\eta_0)|^2 g(\eta_0)\right] (\eta - \eta_0)^2 \] \hspace{1cm} (3)

In order to obtain the analytical solution of the equation (2), the Adomian method is used for solving nonlinear functional equations such as the equation (2), where \(N \) is a nonlinear operator from a Hilbert space \(H \) into \(H \), \(q \) is a given function in \(H \). We are looking for \(f \) satisfying (2) and we assume that (2) has a unique solution for every \(q \in H \).

The Adomian method consists in representing \(g \) as follows [10-16]

\[g = \sum_{n=0}^{+\infty} g_n \] \hspace{1cm} (4)

The nonlinear operator \(N \) is decomposed as follows

\[N(g) = \sum_{n=0}^{+\infty} A_n \] \hspace{1cm} (5)

where the \(A_n \) are functions (Adomian's polynomials) of \(g_0, \ldots, g_n \), that are obtained by writing:

\[p = \sum_{n=0}^{+\infty} \lambda^n g_n, \quad N \left(\sum_{n=0}^{+\infty} \lambda^n g_n \right) = \sum_{n=0}^{+\infty} \lambda^n A_n \] \hspace{1cm} (6)

where \(\lambda \) is a parameter introduced for convenience. From (6) we deduced the \(A_n \) values by the formulae

\[n! A_n = \frac{d^n}{d\lambda^n} \left[N \left(\sum_{i=0}^{+\infty} \lambda^i g_i \right) \right]_{\lambda=0}, \quad n = 0, 1, 2, 3, \ldots \] \hspace{1cm} (7)

Thus we will compute in a recurrent manner \(g_n \) and \(A_n \) to the following relationships:

\[
\begin{align*}
 g_0 &= q \\
 g_1 &= A_0 \\
 \vdots \\
 g_n &= A_{n-1} \\
 \vdots \\
\end{align*}
\]

Indeed for simplicity reasons we choose \(g'(\eta_0) = ag(\eta_0), \ g''(\eta_0) = bg(\eta_0) \) for real numbers \(a, b \) and we take into account \(g(\eta_0) = A(0, \tau) \), the initial pulse; then we have \(g_0, \ g_1 \) and the 2-term
approximation of \(g = \sum_{n \geq 0} g_n \), such as:

\[
g_0(\eta) = e^{-r^2/2} \left[1 + \left(-a - \frac{1}{2\alpha} \right)(\eta - \eta_0) + \frac{1}{2} \left(-b + \frac{a}{2\alpha} + \epsilon \frac{s_n}{\alpha} e^{-r^2} \right)(\eta - \eta_0)^2 \right] \quad (8)
\]

\[
g_1(\eta) = N(\eta_0)
\]

\[
g_1(\eta) = e^{-r^2/2} \left[\frac{1}{\sqrt{\pi}} \left(\eta - \eta_0 + \frac{1}{6} \left(a - \frac{1}{2\alpha} \right)(\eta - \eta_0)^2 + \frac{1}{12} \left(b - \frac{a}{2\alpha} + \epsilon \frac{s_n}{\alpha} e^{-r^2} \right)(\eta - \eta_0)^3 \right) \right] \quad (9)
\]

First of all, let's point out that the following approximations are:

\[
\sum_{n=0}^{\infty} a_n \eta^n = a_0 + a_1 \eta + a_2 \eta^2 + \cdots
\]

We observe that the equation becomes inadequate. We observe that the pulse is shorter, the nonlinear parameters increase. Consequently, when the pulse is shorter, the higher effects are more important. Then, when the time \(T \) has the values of picoseconds or larger, these parameters are very small and can be neglected, so the standard NLS equation becomes inadequate. We observe that the shift frequency. One can see that when the width of the pulse \(T_0 \) decreases, the pulse is shorter and the nonlinear parameters increase.
that during propagation through the waveguide, where the propagation direction is coincident with the z-axis, the intensity of the pulse $A(t, z)$ decreases due to several loss mechanisms for both Gaussian and sech hyperbolic profiles. From Fig. 1 we have chosen a Gaussian pulse for $s = 0.02, T_0 = 10 \text{ [fs]}, \beta_2 = -1 \text{ [ps}^2/\text{km}], \tau_R = 0, a = 0.5, b = 0.25, \kappa = 0.1, \delta_3 = 0.02 \text{ [ps}^3/\text{km}], \epsilon = 2.5 \times 10^{-6}, P_0 = 1 \text{ [mW]}$. Fig. 1 compares the intensity profiles at a distance $z = 10L_D$ with the input Gaussian pulse. As seen there, the shape of the pulse subsided even it keeps the same Gaussian profile. We consider now the propagation of the ultrashort pulse with the initial hyperbolic secant shape with the same parameters. Fig. 2 shows changes in the electric field with propagation. As expected, the the electric field is distorted considerably when compared to that at the input taken to be: $E_{in}(\tau) = \sec(\tau)\cos(\tau)$. Fig. 3 presents the evolution of the intensity of the Gaussian-pulse with $\delta_3 = 0.003[\text{ps}^3/\text{km}]$ and Fig. 4 shows the intensity of the pulse when $\delta_3 = 0.009[\text{ps}^3/\text{km}]$. The comparison shows that when we increase the third-order dispersive term, the pulse shape exhibit oscillations. When the propagation distance is larger the oscillation of the envelope is stronger. Let's point out that the influence of the self-steepening effect is slightly observed when its value is increased.

In the results obtained above, we may see the impact that third dispersive and nonlinear effects have on the propagation of the ultrashort pulses in its whole importance. Under the influence of these effects, the propagation of the ultrashort pulses is much more complicated than in case of short pulses.

Therefore, some higher-order effects such as third-order dispersion, self-steepening play important roles in the propagation of optical pulses. The effect of self-steepening is due to the intensity-dependent group velocity of the optical pulse, which gives the pulse a very narrow width in the course of propagation.

Fig. 1. Gaussian-pulse envelopes as a function of propagation distance z: on top, "z=0 [km]"; and below, the output pulse with $z = 10L_D$
Fig. 2. Hyperbolic-sech pulse envelopes as a function of propagation distance z. On top: "$z=0$ [km]"; and below, the output pulse with $z = 10L_D$.

Fig. 3. Evolution of the intensity of the Gaussian pulse. The parameters used are: "$\delta_3 = 0.03$ ps3/km, $s=0.8$, $\tau_R = 0$, $T_0 = 10$ fs"
Fig. 4. Evolution of the intensity of the Gaussian pulse. The parameters used are: $\delta_3 = 0.09$, $\text{ps}^3/km.s=0.8, \tau_R = 0, T_0 = 10 \text{ fs}$

4 CONCLUDING REMARKS

We have applied Adomian decomposition technique to solve analytically the nonlinear Schrödinger equation for propagation of an ultrashort optical pulse inside a nonlinear medium. Our results illustrate the third order dispersive effect in pulse distortion with an oscillatory structure. The self-steepening factor reduces the width of the pulse during propagation. The ultrashort pulses are widely used nowadays, especially in the optical telecommunication, so the results obtained in the research of these pulses are of great practical importance.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2021 Edah et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/78255

38